Hiperspektral görüntülerin otomatik uyarlamalı ışıklılık dönüşümü ve 3D-DCT yöntemi kullanılarak sıkıştırılması [Pamukkale Univ Muh Bilim Derg]
Pamukkale Univ Muh Bilim Derg. Baskıdaki Makaleler: PAJES-85126 | DOI: 10.5505/pajes.2019.85126  

Hiperspektral görüntülerin otomatik uyarlamalı ışıklılık dönüşümü ve 3D-DCT yöntemi kullanılarak sıkıştırılması

Ergün Can1, Ali Can Karaca2, Oğuzhan Urhan2, Mehmet Kemal Güllü2
1Piri Reis Üniversitesi Elektrik Ve Elektronik Mühendisliği
2Kocaeli Üniversitesi Elektronik Ve Haberleşme Mühendisliği

Hiperspektral görüntüleme, farklı uygulama alanlarındaki kullanımı ile son yıllarda oldukça popüler bir konu haline gelmiştir. Yüksek depolama alanlarına ihtiyaç duyan hiperspektral görüntülerin yüksek verim ve kalite ile sıkıştırılması gerekmektedir. Bu çalışmada, hiperspektral görüntülerin kayıplı sıkıştırılması için otomatik uyarlamalı ışıklılık dönüşümü ve üç-boyutlu ayrık kosinüs dönüşümünü (3D-DCT) kullanan özgün bir yöntem önerilmektedir. Önerilen yöntemde ilk olarak hiperspektral verideki spektral bantlar gruplanmış ve ön işlem olarak otomatik uyarlamalı ışıklılık dönüşümü uygulanmıştır. Elde edilen her bant grubu ayrık kosinüs dönüşümü ve sonrasında Huffman kodlama kullanılarak sıkıştırılmıştır. Önerilen ışıklılık dönüşümünün amacı, bir grup içindeki bant imgeleri arasındaki ışıklılık ve karşıtlık farklılıklarını azaltarak sıkıştırma performansının arttırılmasını sağlamaktır. Deneysel sonuçlarda, Cuprite, Moffett Field, Jasper Ridge ve Pavia University hiperspektral görüntüleri üzerinde önerilen yöntem, ışıklılık dönüşümünün farklı versiyonları ile karşılaştırılmıştır. Karşılaştırma sinyal-gürültü oranı ve ortalama spektral açı uzaklığı gibi ölçütler kullanılarak yapılmıştır. Bunun yanında, sıkıştırılan verideki anomali ve hedef tespiti başarımları da karşılaştırılmıştır. Önerilen yöntemin, 3D-DCT sıkıştırma performansını özellikle düşük bit oranlarında ortalama %40 oranına kadar arttırdığı gösterilmiştir.

Anahtar Kelimeler: Hiperspektral Görüntüler, Sıkıştırma, Ayrık Kosinüs Dönüşümü, Işıklılık Dönüşümü


Compression of hyperspectral images using automatic adaptive luminance transform and 3D-DCT method

Ergün Can1, Ali Can Karaca2, Oğuzhan Urhan2, Mehmet Kemal Güllü2
1Piri Reis University Electric And Electronics Engineering
2Kocaeli University Electronics And Communication Engineering

In recent years, hyperspectral imaging has become a very popular subject with its use in different application areas. Hyperspectral images that require high storage areas need to be compressed with high efficiency and quality. In this study, a novel method that uses automatic adaptive luminance transform and three-dimensional discrete cosine transform (3D-DCT) for lossy compression of hyperspectral images is proposed. Firstly, spectral bands in hyperspectral image are grouped and automatic adaptive luminance transform is performed as a pre-processing stage in the proposed method. Each group is compressed by using DCT and Huffman encoding. The aim of the proposed luminance transform is to increase compression performance by decreasing luminance and contrast differences between band images in a group. In the experimental results, the proposed method and different versions of luminance transform are compared on Cuprite, Moffet Field, Jasper Ridge and Pavia University hyperspectral images. Comparison is carried out using signal-to-noise ratio and average spectral distance metrics. Besides, anomaly and target detection performances are also compared for compressed images. The proposed method has been shown to increase compression performance of 3D-DCT up to an average of 40% rate, especially at low bit rates.

Keywords: Hyperspectral Images, Compression, Discrete Cosine Transform, Luminance Transform




Sorumlu Yazar: Ali Can Karaca, Türkiye


ARAÇLAR
Düzeltilmemiş Tam Metin
Yazdır
Alıntıyı İndir
RIS
EndNote
BibTex
Medlars
Procite
Reference Manager
E-Postala
Paylaş
Yazara e-posta gönder

Benzer makaleler
Google Scholar


 
Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.


LookUs & Online Makale