In this paper we classified 4 skin lesions (Melanoma,Melanocytic Nevus, Basal Cell Carcinoma, Benign keratosis) from ISIC 2019 dataset which was published by International Skin Imaging Collabration in 2019. We used InceptionV3 convolutional neural network model for classification. We applied two preprocessing methods: High Dimensional Model Representation (HDMR) and Hilbert Transform. In conclusion we obtained 89% accuracy on classification of Basal Cell Carcinoma using Hilbert Transform. Moreover, we obtained 78% accuracy on
classification of Melanoma using Contrast Enhancement High Dimensional Model Representation (HDMR).
Bu çalışmada Uluslararası Deri Görüntüleme Birliği tarafından 2019 yılında yayınlanan ve 25000’den fazla dermoskopik deri görüntüsü
içeren ISIC 2019 veri seti kullanılarak 4 çeşit (Melanom, Melanositik Nevüs, Bazal Hücreli Karsinom, İyi Huylu Keratoz) deri pigmentasyonu
Evrişimsel Sinir Ağları yöntemi yardımıyla sınıflandırılmıştır. Sınıflandırma yapılırken InceptionV3 yapay sinir ağı mimarisi kullanılmıştır. Deri görüntülerine önişlem olarak Hilbert Dönüşümü ve Yüksek Boyutlu Model Gösterilimi uygulanmıştır. Elde edilen sonuçlara göre test verisi üzerinde Hilbert Dönüşümü uygulanmış görüntülerde Bazal Hücreli Karsinom hastalığının sınıflandırılmasında %89 başarı oranı elde edilmiştir. Yüksek Boyutlu Model Gösterilimi ile Kontrast Artırımı uygulanan görsellerde ise Melanomun sınıflandırılmasında %78 başarı oranı elde edilmiştir.