Makine elemanları tasarımında çeşitli nedenlerle çentik, delik, kademe ve çeşitli kavisler gibi geometrik şekiller veya süreksizlikler bulunabilmektedir. Ani kesit değişiklikleri gerilme yığılmalarına neden olmaktadır. Gerilme yığılmaları, malzemenin boyut özelliklerinden veya kuvvetlerin uygulama doğrultusu sebebiyle ile oluşabilirler. Bu tür gerilme yığılmaları; malzemede çentik etkisi vardır şeklinde değerlendirilir. Çentik etkisi malzemede kırılmalara, bozulmalara ve deformasyonlara yol açabilir. Bu çalışmada, Eğilme gerilmesi etkisi altındaki millerde çentik faktörü değeri Yapay Sinir Ağları (YSA) ile modellenmiş ve modelin doğruluğu Statistica yazılımı ile kontrol edilmiştir. YSA modeli, Pythia programı kullanılarak hazırlanan bir yazılım ile modellenmiştir. Kullanıcı, milin boyut ölçülerini ve üzerine uygulanan kuvvetin cinsini girerek hesaplamalarda kullanacağı çentik faktörünü, çentik tablolarına bağımlı kalmaksızın ve doğru bir değer ile elde edile bilinmektedir.
Anahtar Kelimeler: Çentik faktörü, Makine tasarımı, Yapay sinir ağları.Notch, hole, tap and a variety of geometric shapes such as curves or discontinuities can be found with various reasons in the design of Machine Element. Stress is caused by sudden changes in section aggregating. Stress concentration can occur with the reason of material features of size or direction of forces application. This type of stress concentration in the material brings out the effect of notch. Notch impact can lead to distortions and breakage of materials. In this study, the notch sensitivity factor values have been modelled Artificial Neural Networks (ANN) for shafts that is under the influence of bending stress, and the accuracy of the model has been verified by using Statistica software. The model has been developed using Pythia. With this software, the user can be obtained the accurate value by inputing shaft dimension and the applied force without the need for notch sensitivity factor tables and any calculations.
Keywords: Notch sensitivity factor, Machine design, Artificial neural network